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Abstract The non-parametric kinetic method (NPK) is a

method for the processing of thermoanalytical data, which

does not make any assumption about the functionality of the

reaction rate with the degree of conversion or with the

temperature. This method has not been widely used due to its

mathematical sophistication and difficulty of automation.

The original NPK method uses only the first (maximum)

singular value whereas additional information could be

drawn from the remaining singular values. A hypothetical

application of the NPK, which uses all the significant sin-

gular values (modified version of the NPK), is the separation

of two or more steps of a complex decomposition reaction.

Using simulated data, we have demonstrated that the mod-

ified version of the NPK is not useful to discriminate among

the decomposition steps of a consecutive complex decom-

position reaction scheme. Nevertheless, the analysis of the

relative strength of the singular values is useful to assess the

degree of separability of the temperature and conversion

functions, which are the outcome of the NPK. Taking into

account the relative magnitude of the first singular value

with regard to the remaining singular values, we have pro-

posed an automated two-scan version of the NPK method

which guarantees two separable functions. As the separa-

bility of both temperature and conversion functions is the

imperative assumption of the single-step kinetics

approximation, the two-scan NPK method can be used as a

testing method for those methods based on this approxi-

mation, the model-free and model-fitting methods.

Keywords Solid-state kinetics � Non-isothermal

kinetics � Single-step approximation � Non-parametric

method (NPK) � Function separability

List of abbreviations

A Matrix with the reaction rate da=dt at different pairs

of values of conversion (rows) and temperatures

(columns) (s-1) (see Eq. 5)

Ai Activation energy for reaction i (s-1)

bi Stoichiometric coefficient of the gas product Gi in

reaction i

Ei Activation energy for reaction i (kJ mol-1)

f(a) Function depending exclusively on the fractional

conversion (a)

f Vector with the values of the function f(a)

Gi Gaseous product from reaction i

h Vector with the values of the function h(T) (s-1)

h(T) Function depending solely on the temperature (T)

(s-1)

MGi
Molecular mass of the gaseous product Gi

(kg mol-1)

m0 Initial sample mass (kg)

m Aggregate reaction mass at time t (kg)

m? Final aggregate reaction mass (kg)

NS0 Initial amount of substance for the solid reactant

(mol)

n Number of consecutive steps in the reaction scheme

for the decomposition of a solid reactant

ni Number of experiments executed by means of a

non-isothermal thermoanalytical technique (TG,

DSC)
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nk Number of rows of the matrix A, each row

corresponds to a fixed value of the conversion

nj Number of rectangles used in a scan of the NPK

method

nl Number of columns of matrix A, each column

corresponds to a fixed value of the temperature

R Gas constant, 8.314 9 10-3 kJ (mol K)-1

ri Function to calculate the conversion a at time t for

the ith experiment, a = ri(T)

si Function to calculate the temperature T at time t for

the ith experiment, T = si(t)

Si Solid product from reaction i in a reaction scheme

with n consecutive decomposition steps

Sj Submatrix with the reaction rate da=dt for interval j

T Absolute temperature (K)

T Vector with the T values from T0 to Tf spaced by an

increment DT.

t Time (s)

W Diagonal matrix with the singular values, Eq. 13.

Xi Molar conversion for reaction i at time t

Xi? Molar conversion for reaction i at the end of the

process

Greek letters

a The fractional conversion, 0� a� 1

a Vector with the a values from a0 to af spaced by

an increment Da
d Normalized value of the singular value x (see

Eq. 27)

H(T) Program temperature set in a non-isothermal

experiment, H Tð Þ ¼ oT=ot

k Index of separability of a matrix A (see Eq. 28)

mi,j Stoichiometric coefficient for solid compound Sj

in reaction i

uj Factor multiplying uj to insure continuity with

uj-1

U T ; að Þ General function to calculate the rate of a

process in condensed state

v Scaling factor, v to rescale vver
T (see Eq. 30)

x Singular value

Subscript

i ith Non-isothermal experiment

k kth Row of matrix A which corresponds to a fixed

value of the conversion

l lth Column of matrix A which corresponds to a fixed

value of the temperature

Superscript

hor Scan with horizontal rectangles in the two-scan NPK

method (width � height)

ver Scan with vertical rectangles in the two-scan NPK

method (height � width)

Introduction

Solid-state reactions generally show a tangled interplay of

various chemical and physical processes such as solid-state

decomposition, reaction of gases with solids, phase tran-

sitions, diffusion, adsorption, and desorption. Full and

exact kinetic description of such a complex multistep

process would be very difficult since a detailed mechanism

of the process could be unknown. The kinetics of this

process can be studied using the single-step kinetics

approximation, which assumes that the complex set of

kinetic equations can be substituted by a sole single-step

kinetic equation. The concept of single-step kinetics

approximation was introduced by Simon [1]. The single-

step kinetics approximation involves the imperative con-

dition of the separability of both temperature and conver-

sion functions. To check the separability of these functions,

the Non-Parametric Kinetics method (NPK), developed by

Serra et al. [2], could be very suitable. The NPK method is

based on the mathematical procedure known as singular

value decomposition (SVD), and the most important fea-

ture of this method is its ability to decouple the experi-

mental values of the reaction rates into two linearly

independent vectors containing information on the tem-

perature and conversion functions without the need of any

assumptions about the functionality of the reaction rate

with the fractional conversion or with the temperature [3].

Thus the NPK method can be used as a testing method for

those methods based on the single-step kinetics approxi-

mation, which use analytical forms of the temperature and/

or conversion functions, i.e., the model-free and model-

fitting methods [4]. Despite this ability of the NPK method,

it has not yet become widespread. The reason was pointed

out by Simon [4]: ‘‘NPK is a perfect method for the

description of kinetic data. It is quite surprising that it is

not applied more extensively. A probable reason is that, on

the first sight, it looks quite laborious and I guess it could

be automated with difficulties.’’ Sewry and Brown [5] also

find the NPK method very interesting and state that it does

not seem to have received the attention that it deserved, due

to its mathematical sophistication and the fact that the

matrix and non-linear regression calculations involved are

not readily automated. Starink [6] also considers that the

NPK method is accurate but, due to its mathematical

complexity, has been applied very little.

The original NPK method [2] uses only the first (max-

imum) singular value computed by the SVD. Additional

information could be drawn taking into account all the

singular values from the SVD. Some authors have applied a

modified version of the NPK method which uses the rela-

tive strength of all the significant singular values, to enable

the discrimination among the steps of a complex decom-

position reaction [7]. This modified version of the NPK
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method requires a unique matrix for a sufficient range of

the fractional conversion and temperatures. Since all the

elements of this matrix cannot be experimentally obtained,

a multivariate regression technique is applied [7–12].

However, other researchers doubt [13] about this technique

due to the fact that some of the matrix elements are nec-

essarily the result of extrapolation of the experimental data,

whereas multivariate regression should be only applied for

interpolation purposes. In this study, the analysis of the

usefulness of the modified version of the original NPK has

been performed to evaluate its ability to determine the

number of steps in a consecutive reaction scheme. The

results of this analysis reveal that the relative strength of

each singular value cannot be connected with the existence

of its associated reaction step. However, the analysis of the

relative strength of the singular values is not a useless task.

The relative magnitude of the first singular value with

regard to the remaining singular values can be indeed used

to assess the degree of separability of the functions h(T)

and f(a). In accordance with this result, we have developed

an automated NPK algorithm to guarantee two separable

functions. The main difference of the proposed two-scan

NPK method with the original NPK method [2] is that the

former uses two scans, whereas the original NPK method

uses one scan. The two-scan NPK method has been pro-

grammed in Matlab (all the Matlab files are available on

request).

Theoretical

Mathematical formulation of the single-step kinetics

approximation

The rate of the processes in condensed state is generally a

function of temperature (T) and the fractional conversion, a
(hereinafter named conversion):

da
dt
¼ U T; að Þ ð1Þ

The single-step kinetics approximation assumes that the

function U in Eq. 1 can be expressed as a product of two

separable functions (independent of each other), with the

first one, h(T), depending solely on the temperature and the

other one, f(a), depending solely on the conversion of the

process:

U T ; að Þ ¼ h Tð Þf að Þ ð2Þ

Combining Eqs. 1 and 2, it is obtained the rate of the

complex multistep condensed state process, which is the

mathematical formulation of the single-step kinetics

approximation [4]:

da
dt
¼ h Tð Þf að Þ ð3Þ

The concept of single-step kinetics approximation, intro-

duced by Simon [4], resides in the interpretation of Eq. 3,

which is not a true kinetic equation and may not be

straightforwardly connected with the reaction mechanism.

Implementation of the original NPK method

The NPK method, as described in [2, 3, 14, 15], is also

based on the single-step kinetics approximation; therefore,

Eq. 3 is the basic relationship for the analysis of kinetic

data. The purpose of the NPK method is to separate the

effects of the experimental variables (a and T) on a total set

of reaction rate data, leading to two separable functions,

f(a) and h(T), without any prior assumptions about their

functionality. The experimental data required to apply the

NPK method are obtained from ni experiments by means of

a non-isothermal thermoanalytical technique (TG, DSC).

Each experiment i is run at a different temperature program

(the relationship between time and temperature reads

H tð Þ ¼ oT=ot). Then, for experiment i two curves are

obtained, together with their corresponding inverse curves:

8HiðtÞ;
a ¼ ri Tð Þ; T ¼ r�1

i að Þ
T ¼ si tð Þ; t ¼ s�1

i Tð Þ

�
ð4Þ

The reaction rate of the processes in condensed state, Eq. 1,

can be expressed as a surface in a three-dimensional space,

where any point of this surface is determined by the

corresponding pair of values of the conversion and the

temperature. The reaction rate does not depend on the

previous history of the process. This continuous surface

can be discretized as an (nk 9 nl) matrix A, which rows

correspond to different degrees of conversion, from a1 to

ank, and which columns refer to different temperatures,

from T1 to Tnl (the number of temperature values chosen, nl

must be higher than the number of experimental curves,

ni):

A ¼

f ða1ÞhðT1Þ � � � f ða1ÞhðTlÞ � � � f ða1ÞhðTnlÞ
..
. ..

. ..
.

f ðakÞhðT1Þ � � � f ðakÞhðTlÞ � � � f ðakÞhðTnlÞ
..
. ..

. ..
.

f ðankÞhðT1Þ � � � f ðankÞhðTlÞ � � � f ðankÞhðTnlÞ

0
BBBBBB@

1
CCCCCCA

ð5Þ

Calculation of the reaction rate along experimental curves

The first step to build the matrix A from experimental data

is the calculation of the derivative of a with respect to

temperature at each ak and for each experimental curve i.

This value, da=dTð Þak ; curve i, is calculated from the
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derivative of ri(T). As these derivatives depend on the

temperature, it is first required to calculate the temperature

at which the curve i reaches each ak. This is accomplished

using the inverse function Tak ; i ¼ r�1
i akð Þ. The calculated

values can be arranged in the nk 9 ni matrix B, where the

rows correspond to different conversion values, from a1 to

ank, while columns correspond to the different experi-

mental curves, from 1 to ni:

B¼

da
dT

� �
a1;Ta1 ;1

� � � da
dT

� �
a1;Ta1 ;i

� � � da
dT

� �
a1;Ta1 ;ni

..

.
� � � ..

.
� � � ..

.

da
dT

� �
ak ;Tak ;1

� � � da
dT

� �
ak ;Tak ;i

� � � da
dT

� �
ak ;Tak ;ni

..

.
� � � ..

.
� � � ..

.

da
dT

� �
ank ;Tank ;1

� � � da
dT

� �
ank ;Tank ;i

� � � da
dT

� �
ank ;Tank ;ni

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð6Þ

The second step is the calculation of dT=dt at each ak

and for each experimental curve i, by means of the

derivative of si(t). The time at which the curve i reaches ak

is calculated using the inverse function evaluated at the

previously calculated Tak ; i:

tak ; i ¼ s�1
i Tak ; i

� �
ð7Þ

Then, the following nk 9 ni matrix can be built:

C ¼

dT
dt

� �
a1; ta1 ; 1

� � � dT
dt

� �
a1; ta1 ; i

� � � dT
dt

� �
a1; ta1 ; ni

..

.
� � � ..

.
� � � ..

.

dT
dt

� �
ak ; tak ; 1

� � � dT
dt

� �
ak ; tak ; i

� � � dT
dt

� �
ak ; tak ; ni

..

.
� � � ..

.
� � � ..

.

dT
dt

� �
ank ; tank ; 1

� � � dT
dt

� �
ank ; tank ; i

� � � dT
dt

� �
ank ; tank ; ni

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð8Þ

The Hadamard product (multiplication element-by-element

for matrices of the same dimension) for matrices B and C

yields the nk 9 ni matrix D, which contains the derivative

of a with respect to time:

D ¼ da
dt

� �
k; i

¼ da
dT

� 	
ak ; Tak ; i

dT

dt

� 	
ak ; tak ; i

( )
k; i

¼ B � C

ð9Þ

Interpolation along the data curves

The last step to build A requires calculating da=dt for each

row (each ak) and for all the selected temperature values

T1; . . .; Tl; . . .; Tnlð Þ: This can be performed interpolating at

each Tl through the row from matrix D corresponding to

the same value of ak

da
dt

� �
ak ; tak ; 1

; . . .
da
dt

� �
ak ; tak ; i

; . . .;
da
dt

� �
ak ; tak

;ni

� 	
:

This interpolation has been implemented using the Matlab

function interp1 with the cubic spline method.

Singular value decomposition

With the vectors f and g defined as:

f ¼ f ða1Þ; . . .; f ðakÞ; . . .; f ðankÞð ÞT ð10Þ

h ¼ hðT1Þ; . . .; hðTlÞ; . . .; hðTnlÞð ÞT ð11Þ

the matrix A can be written as an outer product:

A ¼ fhT ð12Þ

Rewriting A in terms of the vectors f and g has the benefit

of compressing the initial amount of data contained in A, i.e.,

the nk 9 nl reaction rate values, into only nk ? nl values.

The mathematical procedure accomplishing this task is the

singular value decomposition (SVD). It takes a matrix such

as A and decomposes it into three matrices:

A ¼ UWVT ð13Þ

where U and V are the orthonormal matrices, i.e.,

UT ¼ U�1, VT ¼ V�1 and W is a diagonal matrix

containing the singular values of matrix A. If A is (n, m)

in size, then U is (n, m) in size, V is (m, m) in size, and W

is (m, m). If only the first singular value is significant

(W1;1 � W2;2; � � � ;W1;1 �; � � � ;Wm;m), only the first

columns of U and VT are significant and all other

columns may be ignored. These subsets of U and V are

then vectors which are called u1 and v1, respectively.

Similarly W1,1 is called w1. Then, matrix A can be

approximated to:

A ¼ UWVT ’ u1w1vT
1 ð14Þ

Applying the original NPK method to non-isothermal

experiments

On account of the data acquired by a non-isothermal

thermoanalytical technique, the whole a range (from 0 to 1)

is not available over all of the temperature range. This

difficulty has been overcome by other authors [2, 3, 14,

15], dividing up the total range of data into submatrices Sj,

each enclosing a different range of temperatures and a
values (a two-dimensional interval j) to completely fill the

area bounded by the TG curve at the lowest heating rate

and the TG curve at the highest heating rate. These sub-

matrices Sj can be drawn as rectangles in a a versus tem-

perature plot (Fig. 1). If the height of each rectangle is kept

constant, the method is called rigid NPK, and if a variable

height is allowed for each rectangle, the method is called
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adaptive NPK [15]. The submatrices Sj are analyzed sep-

arately by the SVD obtaining the matrices Uj, Wj and Vj.

As before, if only W11
j is of relevance, then only the first

columns of Uj and Vj are required:

S j ¼ U jW jVjT ffi u jw jvjT ð15Þ

The vectors uj, vj are combined into one set by adding

the second and subsequent vectors to the first, after

multiplying each vector uj by a suitable factor uj, and the

corresponding vj has to be divided by the same factor,

keeping the product u jw jvjT constant. These factors can be

calculated forcing successive matrices to share at least one

row of data, which means that matrices Sj and Sj ? 1 have a

least one row for the same value of a. Finally, the two

outcome vectors of the original NPK method can be

expressed as:

f ¼ u1; u2u2; . . .; u ju j; . . .; unjunj
� �T ð16Þ

h ¼ w1

u1
v1;

w2

u2
v2; . . .;

w j

u j
v j; . . .;

wnj

unj
vnj

� 	T

ð17Þ

where the value u1 is fixed equal to 1.

The modified version of the NPK

A modified version of the NPK method which uses only

one rectangle has been employed instead of the original

NPK method with several rectangles. The modified version

of the NPK method has been applied with the purpose to

enable the separation of two or more processes of a com-

plex decomposition reaction [7–10]. The usefulness of this

modified version of the NPK is below analyzed using a

simulated complex decomposition reaction scheme, the

decomposition of a solid compound S that undergoes n

consecutive decomposition steps:

mSS0ðsÞ ! m11S1ðsÞ þ b1G1ðgÞ
m21S1ðsÞ ! m22S2ðsÞ þ b2G2ðgÞ

. . .
mn;n�1Sn�1ðsÞ ! mn;nSnðsÞ þ bnGnðgÞ

ð18Þ

where Si is the solid product and Gi is the gaseous product

from the reaction step i. This modification of the original

NPK method is based on the utilization of the SVD as a

method to decompose the matrix A into a weighted,

ordered sum of separable matrices Bi:

A ¼
X

i

Bi ¼
X

i

uiwiv
T
i ð19Þ

where uj and vj are the ith columns of the corresponding SVD

matrices U and V, Eq. 13, and wi are the ordered singular

values. Note that if only the first separable matrix B1 is

considered (i.e., if only the first singular value w1is used),

Eq. 19 turns into Eq. 14. The modified version of the NPK

assumes that the existence of the step i is subject to the relative

strength of the singular value associated with this step (wi). A

value of wi below a certain tolerance implies that the step i does

not exist. This modified version of the NPK method requires

necessarily a unique matrix A which contains the reaction rate

for all pair of values (a, T) inside the two-dimensional domain

specified by the a range (from 0 to 1) and by the temperature

range (from the initial temperature to the highest final

temperature). This two-dimensional domain is drawn as a

unique rectangle in a a versus temperature plot.When using

thermoanalytical methods, changes of aggregate physical

properties are observed, i.e., enthalpy and mass in the case of

DSC, DTA, and TG. In thermogravimetric analysis, the

definition of the conversion (or aggregated reacted fraction) is

performed in terms of the aggregate reaction mass loss

corresponding to the actual time (Dm) and the aggregate

reaction mass loss corresponding to the end of the process

(Dm?):

a ¼ Dm

Dm1
¼ m0 � m

m0 � m1
ð20Þ

where, m0 is the initial sample mass, m is the aggregate

sample mass at time, t, and m? is the final aggregate

Temperature

Fig. 1 Original NPK method using several rectangles, each one

encloses a different range of temperatures and a values to fill the area

bounded by the TG curve at the lowest heating rate and the TG curve

at the highest heating rate
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sample mass. The conversion for reaction i is defined

as:

ai ¼
Xi

Xi1
ð21Þ

where Xi is the molar conversion for reaction i at time t,

and Xi? is the molar conversion for the reaction i at the end

of the process. The relationship between the aggregate

conversion a (the value that can be experimentally

measured) and the conversion for reaction i, ai is:

a ¼
X

i

biMGi
Xi;1P

i biMGi
Xi;1

� 	
ai ð22Þ

where MGi
is the molecular mass of the gaseous product Gi.

Applying Eq. 3 for each reaction step i and using

Eq. 21, we obtain the following general expression for the

reaction rate of the step i for the consecutive reaction

scheme, Eq. 18:

i ¼ 1; da1

dt
¼ h1ðTÞf1 �mSð ÞX1;1

NS0
aið Þ

� �

i [ 1; dai

dt
¼ hiðTÞfi 1� �mi;i�1ð ÞMi�1

MS

Xi;1
NS0

ai�1 � aið Þ
� 	

8><
>:

ð23Þ

where Xi? is calculated from the stoichiometric

coefficients according to the following expression:

i ¼ 1; X1;1 ¼ NS0

�mSð Þ

i [ 1; Xi;1 ¼ mi�1;i�1

�mi;i�1ð Þ. . .
m2;2

�m3;2ð Þ
m1;1

�m2;1ð Þ
NS0

�mSð Þ

(
ð24Þ

TG data have been generated taking into account the first 2

steps of the scheme reaction in Eq. 18. For only two

decomposition steps, the particular case M1m11 ¼
MS �mSð Þ ¼ 1 and the first-reaction-order model f að Þ ¼
1� að Þ1 for both steps, Eqs. 23–24 result into the following

system of ordinary differential kinetic equations:

da1

dt
¼ h1ðTÞ 1� a1ð Þ

da2

dt
¼ h2ðTÞ a1 � a2ð Þ

ð25Þ

The temperature function h(T) for each reaction i is

expressed by the Arrhenius equation:

hiðTÞ ¼ Aie
ð�Ei=ðRTÞÞ ð26Þ

where Ai and Ei are the pre-exponential factor and the acti-

vation energy, respectively, and R stands for the gas con-

stant.The values chosen for the Arrhenius parameters for the

first-reaction step are A1 = 1 9 105 s-1 and E1 =

73 kJ kmol-1, while for the second reaction step

A2 = 1 9 108 s-1 and E2 = 120 kJ kmol-1. Six TG curves

have been generated setting a constant heating rate

(Hi Tð Þ ¼ oT=ot ¼ bi) with the following values: 1, 2, 4, 8,

16, and 32 K min-1 (Fig. 2). The application of the modified

version of the NPK method to establish the number of steps

requires a unique rectangle inscribed in the area bounded by

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
300 400 500 600 700 800

Temperature/K

32 K . min–1

16 K . min–1

8 K . min–1

4 K . min–1

2 K . min–1

1 K . min–1

Fig. 2 TG main curves generated at 6 heating rates for a consecutive

reaction scheme with two steps using the reaction order model with

n = 1 and the Arrhenius function

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
300 400 500 600 700 800

Temperature/K

Fig. 3 TG main curves at 6 heating rates (1, 2, 4, 8, 16, and

32 K min-1) (solid lines) and TG auxiliary curves (dashed lines) for

two steps consecutive reaction scheme with a small inscribed
rectangle, and a large circumscribed rectangle to the shadowed
area, which is bounded by the TG main curve at the lower heating

rate 1 K min-1 and by the TG main curve at the highest heating rate

32 K min-1
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the TG experimental curve at lower heating rate

b1 = 1 K min-1 and by the TG experimental curve at the

highest heating rate b6 = 32 K min-1. Nevertheless, the

inscribed rectangle with the maximum height that can be

drawn does not cover the whole a range; it starts at a = 0.35

and ends at a = 0.70 (Fig. 3, small rectangle inscribed in the

shadowed area). If only one rectangle is allowed for this

modified version of the NPK method, the solution is to

employ more TG curves at lower and higher heating rates

(they will hereafter be referred to as TG auxiliary curves). In

the current example, it is necessary to decrease the heating

rate until 1 9 10-6 K min-1 and increase the heating rate

until 1 9 106 K min-1 in order to draw a unique circum-

scribed rectangle which contains the six TG experimental

curves (Fig. 3, large circumscribed rectangle). Obviously,

these heating rates cannot be carried out in real TG experi-

ments (a heating rate of 1 9 10-6 K min-1 for a range

temperature from 400 to 700 K, implies an experiment of

570 years long !).

Despite this insurmountable experimental fact, this

analysis is continued to investigate if the SVD, applied to

only one rectangle, can ascertain the number of steps. The

TG auxiliary curves can be generated by computer simu-

lation. Then, the SVD is applied using the large circum-

scribed rectangle (Fig. 3) that covers a range of a values

from 0.005 to 0.995 and a temperature range from 390 to

754 K. For the parameters of the NPK method we chose a

step size of 0.005 for a and a step size of 2 K for T. For

each a value, the dependent variable da=dtð Þ is calculated

for each temperature by interpolating through the TG

auxiliary and TG experimental curves. With these reaction

rate values the matrix A (199 rows and 182 columns) is

built and the SVD applied. The magnitude of each singular

value has been normalized using the norm of the vector

generated with all the singular values of A:

di ¼ wi

, ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

w2
i

r
ð27Þ

For this reaction scheme of two consecutive steps, the TG

curves were generated assuming that the reaction rate of

each step has the same weighting factor (0.5) to the overall

reaction rate. Accordingly, a successful outcome for the

modified version of the NPK as a method to determine the

number of steps should have led to only 2 weighty singular

values (w1 ’ w2 � w3; . . .;� wm) with same strength

around d1 ’ d2 ’ 0:5. Nonetheless, the first singular value

is w1 = 13.47 (a normalized value of d1 = 0.998) and the

second singular value is w2 = 0.7810 (a normalized value

of d2 = 0.0579). Therefore, the computed singular values

from this matrix do not reveal that the scheme reaction

consists in two consecutive reactions.

The same SVD procedure has been applied to the ther-

mal decomposition process with three and ten steps for an

in-depth analysis of the potential application of the modi-

fied NPK method. The case of a unique step has also been

simulated to allow for comparison. In all the cases and for

all the steps, f að Þ is the reaction order model with n = 1,

and h(T) follows the Arrhenius law. Table 1 shows the pre-

exponential factors (Ai) and the activation energies (Ei)

used to generate the TG main curves for all the reactions

schemes (Fig. 4). The TG auxiliary curves and the cir-

cumscribed rectangle to the TG main curves for the reac-

tion scheme with one, three, and ten steps are shown in

Figs. 5, 6, and 7, respectively. After applying the SVD

decomposition to each reaction scheme, the first 10 sin-

gular values have been analyzed. The normalized values di

of the 10 singular values for each reaction scheme are

shown in Fig. 8. As expected, the scheme reaction with

only one step has only one significant singular value,

d1 = 1. For the multistep reaction schemes, the normalized

value of the singular value does not match with the

expected contribution of each step to the overall reaction

rate. For the case of three consecutive steps, it would be

expected that the 3 first singular values would have the

same strength. However, the normalized value of the first

singular value (d1 = 0.999) is approximately 31 times

higher than the normalized value of the second singular

value (d2 = 0.0316), and approximately 485 times higher

than the normalized value of the third singular value

(d3 = 0.0021). The SVD analysis for the case of ten con-

secutive steps reaction scheme shows the same behavior:

Table 1 Parameters of the temperature function h(T) for each reaction step i for the consecutive reaction schemes with 1, 2, 3, and 10 steps

1 Step Ai/s
-1 1 9 106

Ei/kJ kmol-1 90

2 Steps Ai/s
-1 1 9 105 1 9 108

Ei/kJ kmol-1 73 120

3 Steps Ai/s
-1 5 9 105 4 9 106 1 9 108

Ei/kJ kmol-1 78 100 128

10 Steps Ai/s
-1 5 9 103 5.6 9 107 1.1 9 108 1.7 9 108 2.2 9 108 2.8 9 108 3.3 9 108 3.9 9 108 4.4 9 108 5 9 108

Ein/kJ kmol-1 65 73 81 89 97 105 113 121 129 137
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the first singular value has a much higher significance than

the other 9 singular values (Fig. 8). These results confirm

the conclusion drawn from the 2 steps scheme reaction, and

reveal that the analysis of the relative strength of the sin-

gular values from a unique matrix A is not useful to elu-

cidate the number of steps in a complex decomposition

process.

Usefulness of the singular values relative strength

analysis

The impossibility to determine the number of steps

involved in the consecutive reaction scheme using all the

singular values does not relegate the analysis of the relative

strength of the singular values to a useless task. The rela-

tive magnitude of the first singular value with regard to the

remaining singular values can be indeed used to assess the

degree of separability of the functions h Tð Þ and f að Þ. As

the imperative assumption of the single-step approximation

is the separability of the two former functions, the degree

of separability can reveal the validity of the single-step

approximation. An index of separability can be defined as

the ratio of the power of the largest singular value (w1) to

the sum of the power of all the singular values [16]:

k ¼ w2
1=
X

i

w2
i ð28Þ

The closer the matrix A is to being separable, the more

dominant the first singular value (w1) is over its counterparts.

The most favorable case for compressing the reaction rate

data occurs when the matrix A is reproducible to good

approximation using only the biggest singular value

(w1 � w2 � w3; . . .;� wm). To guarantee that the two

vectors f and h are linearly independent, the height of the

rectangles defined in the NPK method should be set at the

lowest possible values. The rank of the matrix A can be used

to quantify the degree of separability of the vectors obtained

through the SVD. If the rank is one, the matrix A can be

exactly reconstructed as an outer product of two vectors,

Eq. 12. This rank is equal to the non-zero elements of the

diagonal matrix W, Eq. 13, which is the same that the
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order model with n = 1 and the

Arrhenius function have been
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number of non-zero singular values. As the SVD uses a

numerical algorithm, none of the singular values can be

exactly zero. Then, it is necessary to specify a tolerance and

consider zero any singular value below this tolerance. To

illustrate the effect of the rectangle height in the degree of

separability, the SVD has been applied to two rectangles with

different height (Fig. 9): one with the height used in the

original NPK method extending from a = 0.50 to a = 0.60

(Da = 0.1), and other rectangle with a much smaller height

extending from a = 0.545 to a = 0.555 (Da = 0.01). For

both cases, the alpha step (Da) and the temperature step (DT)

have been chosen to obtain 50 values for both variables

inside the rectangle. Only for the small rectangle in Fig. 9 the

index of separability is 1, which guarantees the separability

of the two vectors f and h.
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Fig. 5 TG main curves (solid lines) at 6 heating rates (1, 2, 4, 8, 16,

and 32 K min-1) and TG auxiliary curves (dashed lines) for only one-

step reaction with a unique circumscribed rectangle to the TG main

curves for the application of the SVD
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Fig. 6 TG main curves (solid lines) at 6 heating rates (1, 2, 4, 8, 16,

and 32 K min-1) and TG auxiliary curves (dashed lines) for 3 steps

consecutive reaction with a unique circumscribed rectangle to the TG

main curves for the application of the SVD
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Fig. 7 TG main curves (solid lines) at 6 heating rates (1, 2, 4, 8, 16,

and 32 K min-1) and TG auxiliary curves (dashed lines) for 10 steps

consecutive reaction with a unique circumscribed rectangle to the TG

main curves for the application of the SVD
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Two-scan NPK method

To our knowledge, the authors who have used the NPK

method have applied the rigid or the adaptive implemen-

tation, or a combination of both alternatives. Nevertheless,

the original procedure for the NPK method presents diffi-

culties that jeopardize its automatization. Each value of a
matches with a unique element from vector f, so there is an

injective correspondence (one-to-one) between the values

of a and the elements of vector f. However, the same does

not occur for vector h. After applying the NPK method, for

each value of the temperature there is a correspondence

with several elements from vector h (one-to-many). This

fact introduces ambiguity in the method because only one

of the possible values of vector h must be assigned to each

value of the temperature.

An NPK method which utilizes two scans has been

proposed to avoid this arbitrariness. The first scan uses

horizontal rectangles (width � height) to obtain a vector

uhor
a , which has an unequivocal correspondence with a

vector ahor which elements are user-defined from a0 to af

with a fixed increment Da. And the second scan employs

vertical rectangles (height � width) to calculate a vector

vver
T which elements have an injective correspondence with

the elements of vector Tver, which is also selected by the

user from T0 to Tf with a step of DT (Fig. 10).

The first scan uses a number of horizontal rectangles

(njhor), and the rectangle j is defined by the values of ak
j and

Tl
j contained in the vectors ahor;j and Thor;j, respectively.

The criterion to select the height of the horizontal rectan-

gles and the width of the vertical rectangles, and therefore,

the number of rectangles used is based on the index of

separability previously defined, Eq. 28. The height (hori-

zontal rectangles) and width (vertical rectangles) are

selected to keep the index of separability equal to 1 (minus

a specific tolerance). After applying the SVD to each

horizontal rectangle of the first scan, the vectors uhor;j and

vhor;j are obtained for each rectangle j. Using the steps

described in ‘‘Applying the original NPK method to non-

isothermal experiments’’ section, the njhor pair of vectors,

uhor;j and vhor;j, are combined into two vectors, uhor
a and

vhor. But, only for vector uhor
a , each one of their elements

corresponds with a unique element of vector ahor (denoted

by adding the subscript a to uhor). This fact is illustrated in

Fig. 10a, where for a fixed value of ak, a parallel line to the

0.8
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Fig. 9 Two rectangles with different height for the application of the

SVD

Rectangle nj

Tl

Temperature

Temperature

k

(a)

(b)

Fig. 10 Two-scan NPK method, horizontal rectangles (a) and ver-
tical rectangles (b)
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temperature axis only crosses one rectangle, whereas for a

specific temperature value, Tl, a parallel line to the y axis

crosses many rectangles. Hence, for a specific Tl, there

exists a correspondence to many vhor,j (note that the sub-

script T has not been added to vhor). Through a second scan

using vertical rectangles with a small width, a non-arbitrary

correspondence between T and v can be established. The

outcomes from the second scan are the two vectors

uver; vver
T

� �
, analogously to the first scan. After the two

scans, the injective vectors uhor
a and vver

T we are aiming for

cannot be directly chosen, because their outer product

would modify the values of da=dt:

da
dt

� 	
a;T

¼ uhor
a vhor ¼ uvervver

T 6¼ uhor
a vver

T ð29Þ

The injective vectors uhor
a and vver

T can be selected

keeping the original da=dt values by rescaling one of the

two vectors. Once uhor
a is chosen, vver

T is rescaled introducing

a scaling factor, v, in Eq. 29.

da
dt

� 	
a;T

¼ uhor
a vhor ¼ vuverv

ver
T

v
ð30Þ

The scaling factor, v, is calculated assuming that

uhor
a ¼ vuver. The final outcome after the two-scan NPK

method are the injective vectors uhor
a and v̂ver

T ¼ vver
T

�
v.

The two-scan NPK guarantees that the functions h Tð Þ
and f að Þ obtained are separable, and hence it makes useful

for the analysis of the thermo analytical data, which starts

assuming that the single-step kinetics approximation is

valid. The separability of these functions is guaranteed

adjusting the parameters of the NPK method: number and

height of the horizontal rectangles and number and width

of the vertical rectangles. To check if the single-step

approximation remains valid, the TG curves are simulated

taking the outcome (h Tð Þ and f að Þ) from the two-scan NPK

algorithm at each programmed temperature Hi Tð Þ (note

that is not limited to a constant heating rate). An ordinary

differential equation system (ODEs) with 2 equations has

to be solved given the initial values of the conversion (a0)

and temperature (T0):

8Hi tð Þ
i¼1;2;...;nisim !

da
dt¼ f ðaÞhðTÞ

dT
dt ¼Hi tð Þ

t¼0!a0; T0

9=
;

������ !solveanODEs
a¼ rsim

i ðTÞ

ð31Þ

Then, the solution functions ri
sim(T) are compared with the

experimental TG curves for all the programmed tempera-

tures, Hi(T). If the simulated data are not able to fit the

experimental curves, it implies that a couple of two sepa-

rable functions cannot be used to model the experimental

data, and according to Simon [17] the single-step

approximation is too crude. On the contrary, a good fit

guarantees that the single-step kinetics approximation is

valid.

Conclusions

We have proved that the NPK modified version which uses

only one rectangle cannot be used to elucidate the number

of steps in a consecutive decomposition reaction scheme.

This conclusion is based on two reasons. First, this appli-

cation of the NPK method requires a unique matrix A, but

it is not possible to experimentally obtain all the elements

of the matrix A for a sufficient range of a values and

temperatures. The second reason relies on the fact that the

relative strength of each singular value cannot be con-

nected with the existence of its associated reaction step.

We have proposed the two-scan NPK method that

guarantees to find a pair of separable functions, h(T) and

f(a), and then check if the single-step kinetics approxima-

tion is valid. Consequently, the two-scan NPK can be used

as a testing method for the methods based on the single-

step kinetics approximation, the model-fitting and model-

free methods. The two-scan NPK method provides to the

model-fitting method the advantage of performing the fit of

the parameters of h(T) and the fit of the parameters of f(a),

separately. As demonstrated in [18], for the non-isothermal

kinetic data and using the model-fitting method, almost any

f(a) can satisfactorily fit the data at the cost of dramatic

variations in the Arrhenius parameters (h(T)). The later is a

consequence of the simultaneous fitting of all the param-

eters (compensation effect) [19]. With regard to the iso-

conversional methods, as they are also based on the single-

step approximation, the NPK has the benefit that allows for

prior checking of the separability of functions h(T) and f(a).

Acknowledgements The authors gratefully acknowledge the

financial support from the ‘‘Ministerio de Ciencia e Innovación’’ of

Spain under project CTQ2009-14420-C02-02.

References

1. Simon P. Single-step kinetics approximation employing non-

Arrhenius temperature functions. J Therm Anal Calorim.

2005;79(3):703–8.

2. Serra R, Sempere J, Nomen R. A new method for the kinetic

study of thermoanalytical data: the non-parametric kinetics

method. Thermochim Acta. 1998;316(1):37–45.

3. Sempere J, Nomen R, Serra R. Progress in non-parametric

kinetics. J Therm Anal Calorim. 1999;56(2):843–9.

4. Simon P. Considerations on the single-step kinetics approxima-

tion. J Therm Anal Calorim. 2005;82(3):651–7.

5. Sewry JD, Brown ME. ‘‘Model-free’’ kinetic analysis? Thermo-

chim Acta. 2002;390(1–2):217–25.

Analysis of the relative strength of the singular values 595

123



6. Starink MJ. The determination of activation energy from linear

heating rate experiments: a comparison of the accuracy of iso-

conversion methods. Thermochim Acta. 2003;404(1–2):163–76.

7. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal

TG data: comparative kinetic analysis with NPK method.

J Therm Anal Calorim. 2005;80(1):59–64.

8. Vlase T, Vlase G, Chiriac A, Doca N. About compensation effect

by thermal decomposition of some catalyst precursors. J Therm

Anal Calorim. 2005;80(1):87–90.

9. Vlase G, Vlase T, Tudose R, Costisor O, Doca N. Kinetic of

decomposition of some complexes under non-isothermal condi-

tions. J Therm Anal Calorim. 2007;88(3):637–40.
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